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The vibration of an elastic rod with a large point mass at one end to which a given harmonic load is applied is investigated. The 
other end of the rod is connected to a rigid punch in continuous contact with a semi-bounded elastic medium. Some lemmas 
are proved on systems with simplified boundary conditions with properties which majorize the characteristics of the initial system. 
The effect of the system parameters on the conditions under which an unbounded resonances occur is thereby determined. Analytic 
relations for determining the number of resonance frequences are obtained. © 1999 Elsevier Science Ltd. All rights reserved. 

It has been established [1] that unbounded low-frequency resonances occur in the interaction of a massive 
body with a semi-bounded medium. Under certain conditions this can happen when elastic solids of 
finite dimensions are in contact with an elastic base, as noted in [2] when investigating the flexural 
vibration of an elastic beam on the layer surface. The model of a bounded body considered below gives 
a clear picture of the mechanical nature of the occurrence of resonances when an elastic solid of finite 
size interacts with a semi-bounded medium. 

1. We consider an elastic two-mass system (referred to below as "the system"), which contains an 
elastic rod which connects a massive body MI with a rigid punch M2 occupying a region f) on the surface 
of the medium. The base is a semi-bounded medium (the 'medium') with a critical frequency of wave 
propagation (a layer, a packet of layers, etc.). The system vibrates vertically due to a harmonic load 
applied to the body M1 (the time dependence is taken in the form exp(-icot)) .  There is zero friction in 
the contact area. 

The investigation of the resonance properties of the system reduces to a boundary-value problem 
which, in dimensionless variables (the time factor is omitted here and below), has the form 

wxx = --a2w (1.1) 
2 

x = l: --mjK2W = F - ESwx (1.2) 
2 

x = 0: -m2r,2w = ESwx  - Pw, P = H q(xl ,x2)dxldx2 (1.3) 

Here F is the amplitude of the external load, r 2 = pl.t-ta2J is the vibration frequency relative to the 
parameters of the medium, p and ~t are the density and modulus of elasticity of the material of the 

1 medium, a = ~0~:2 is the relative frequency of vibration of the rod, where ~ = poE-, E, P0 are Young s 
modulus an the density of the material of the rod relative to the respective parameters of the material 
of the medium, mn (n = 1, 2) is the mass of the body Mn and q(xl,  x2) are the stresses in the contact 
area, which satisfy the integral equation 

kq = ~ k ( x  I - ~, x 2 - n)q(~,  r l ) d ~  = 1, (x I , x 2) E ~ (1.4) 
t~ 

kfx,, x 2) = I ~ Kfa, [$)e -i¢~' +~Odcxd~ 
r~ r 2 

The form of the functions K(~, 13), the rule used to choose contours I"~ and F2 for different contact 
problems, the methods of solving integral equations of the type (1.4), and the properties of these 
solutions, are given in [3, 4]. P0c2), the reaction of the base to a unit displacement of the punch, is a 
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real function in the frequency range [0, ~c*] and complex-valued outside that range; ~c* is the first critical 
frequency of wave propagation. It is this which governs the features of resonance interaction of bounded 
elastic bodies with semi-bounded media. In particular, the value of the critical frequency determines 
the boundary of the region of existence of unbounded resonances. We will refer to boundary-value 
problem (1.1)-(1.3) as Problem 1. 

We will now consider special cases of conditions (1.2) and (1.3) 

x = 1: F - ESw x = 0 (1.5) 

x = 0: w --- 0 (1.6) 

We will refer to boundary-value problem (1.1), (1.2), (1.6) as Problem 2, and to problem (1.1), (1.5), 
(1.6) as Problem 3. In terms of mechanics, Problems 2 and 3 describe the vibrations of a "clamped" 
system or "clamped" rod, respectively. 

The solution of  Problem 1 has the form (wn is the amplitude of the vibration of the solid Mn) 

wl = F[yo¥1 + Ecr]Ao l, wz = FEt~(costllAo) -I (1.7) 

where 

2 - i  - I  - l  0 
Yo = tgt~l, YI = P - m 2 K 2 ,  Y2 = Eo(yo + Y3 ) A I  , Y 3  = mlO (1.8) 

- !  0 -1 
A o = E O A I ( Y I - ¥ 2 ) ,  AI = 1 - ¥ o Y 3 ,  m l = m l P o  

It follows from (1.7) and (1.8) that the resonance frequencies of a system which interacts with an 
elastic base are the eigenvalues (EV) ~:°n of Problem 1, which satisfy the equation 

~O(K2) = 0 (1.9) 

If ~¢0 are real, the system in contact with an elastic base has an unbounded resonance. 

L e m m a  1. The real roots K°n of Eq. (1.9) satisfy the inequality Ic°n < K*. 
The lemma follows from the fact that Eq. (1.9) cannot have real roots for complex values of P(K2). 
The EV zn of Problem 2 satisfy the equation 

A I ( K 2 )  = 0 (1.10) 

The EV z ° of Problem 3 are the roots of the equation cosol  = 0. By virtue of the properties of Problems 
2 and 3, zn and Z°n are real, with z ° = (n - 1/2)noffl/-1 (n = 1, 2, 3 . . . .  ). 

2. Let N be the number of  EV zn and No the number of EV z°n in the interval [0, ic*], that is, zN ~< ~:* 
, 0 _< , 0 , , 1 and zN+l > ic , zN0+l ~ ~: and zN0+l> K , where No = [r n- o0/ + 1/2] ([a] is the integer part 

of a). 
Note that ~:* = ~/2 [3, 4] in the case of an elastic layer with a clamped lower face, that is 

No = [ (%/+ 1)/21 (2.1) 

Theorem. T h e  number of unbounded resonances t% ° of a system in contact with an elastic medium 
N* satisfies the inequality N* I> No, where N* = N o + 1 if one of the inequalities y10¢*) ~< yz0c*) or 
Y0(~:*) >~ )'30 c*) is satisfied, N* = No + 2 if both are satisfied, and N* -- No if neither is satisfied. 

To prove the theorem, we will establish a relation between the EV of boundary-value problems 1, 2 
and 3 and the number that there are. 

L e m m a  2. For the EV of Problems 1 and ,c ° <~ zn in the interval [0, it*]. 
It follows from (1.8) that z, are poles of the function y20c2) (curve 2 of Fig. 1). The lemma follows 

from the continuity of Y2(r2) in the interval [Zk-1, Zk], (k = 1, 2, 3 . . . .  ; z0 = 0) and the boundedness of 
y10¢2) (curve 1 of  Fig. 1). 

L e m m a  3. The EV of Problems 2 and 3 satisfy the inequality xn <~ zOn. 
To prove the lemma, we convert (1.10) to the form 

Yo(K2) - Y3(K2) = 0 
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According to (1.8) zn ° are poles of the function ~/0(r2) (curve 2 of Fig. 2). The lemma follows from the 
behaviour of  the functions V00¢2) and ~'30¢2) (curve 1 of Fig. 2) in the interval [Z°_l, z °] (k = 1, 2, 3 . . . .  ; 
z0°=0). 

It follows from Lemmas 2 and 3 that, just as when a "clamped" rod is loaded, replacing a rigid base 
by an elastic base reduces its resonance frequencies: ,¢0 ~< z,  ~< z ° . 

The  relation between the number of EV of Problems 1, 2 and 3 in the interval [0, ,¢*] can be established 
by the following lemmas. 

Lemma 4. If ~/I(K*) ~< )'2(~*), then N* = N + 1, and otherwise N* = N. 
According to Lemma 2 I¢~v e [0, zN]. It follows from the behaviour of ~/l(K2) and ~'20¢2) in the interval 

[zN, ~¢*] that K~v+l e [zN, r*],  where ~q0¢*) ~< V20¢*). 

Lemma 5. If 73(K*) ~ ~/0(K*), then N = No + 1 and otherwise N = No. 

By virtue of Lemma 3, zN 0 ~[0, zoo ]. Similarly zN0+l ~ = zOo , K* when y0(r*)/> "/3(K*). 

Lemma 5 completes the proof  of the theorem. 
The theorem gives a clear idea of the effect of the parameters of the system on the resonance 

conditions, from which the number of  low-frequency unbounded resonances can be determined without 
having to make a complicated analysis of the dynamic contact of the system with an elastic base and, 
if necessary, can be altered by choosing the parameters of the system appropriately. 

Corollary 1. When ml = 0, the number of unbounded resonances N* = No + 1, if "/I(K*) ~< y2(K*). 
Otherwise N* = No. 

The corollary follows from Theorem 1, since the EV of Problems 2 and 3 are equal when ml = 0. 

Corollary 2. If o 0 / >  1/2, a system in contact with an elastic medium has at least one unbounded 
resonance for a punch of any mass m 2. 

Corollary 3. I f m  2 > P(K*)K *-2, a system in contact with an elastic medium has at least one unbounded 
resonance, whatever the length of the rod. 

Remark. The values ofmj and m 2 affect not only the number of resonances, but also the values of the resonance 
0 frequencies, m 2 having a direct influence on ~¢n (Fig. 1), while ml has an indirect effect through the values z,, 

(Fig. 2). 
1. For any values of m 2 we have z,,q < rn ° < Zn. An increase of m 2 leads to a reduction in r~. For small values 

of  m2, the effect of a change in these values on the resonance frequencies increases with the number of the resonance 
frequency. As m 2 increases (as ~ approaches Zn-l) the quantities ~:o change more slowly, approaching a limit, first 
for higher and then for lower resonance frequencies. Ultimately, for sufficiently large values of m2, any change in 
these values affects only the first resonance. 

2. For any values of ml we have ~o < zn < z °, where ~o are the zeros of the function ~/0(~¢2). An increase in 
0 ml  leads to a reduction in the values of  zn, which in turn reduces the resonance frequencies K,,. The rate of  
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change ofz, for small ml increases with the number of the resonance frequency. As ml increases (as z, approaches 
~°n) Zn changes more slowly, approaching a limit but not reaching ~0. As before, this occurs first for very high, and 
then for lower frequencies. Ultimately, if ml is large enough, any change in its value affects only the first resonance. 

3. As an example, we will consider the plane problem of the vibration of an elastic two-mass system on the surface 
of an elastic layer of thickness h with clamped lower boundary. The system is a rigid strip-like punch M2 which, in 
plane, occupies the region Ix1 [ ~< a, and is connected by a rod of finite length I to the massive body M1. Young's 
modulus and density of the rod material are E and P0, respectively. It is assumed that the punch, rod and body M1 
perform translational vertical vibration under the effect of a harmonic load applied to the bodyM1. The boundary- 
value problem for the motion of the components has the same form as (1.1), (1.2), except that the reaction of the 
medium P0c2) in this case is represented by the expression 

¢1 

P= ~ q(xz)dx I (3.1) 
- a  

The contact stresses q(xl) satisfy the integral equation 

i ksa(xl-~)q(~)d~= l, ka3(s)= ~ gaa(oOe-imdtx (3.2) 
- a  l ' l  

The form of the function K33(ct) for the problem of the vibration of a rigid punch on the surface of a layer with 
a clamped base is well known and will not be given here. We use the factorization method [3, 4] to solve integral 
equation (3.2). The function q(xO and the reaction of the base (3.1) are given by well-known formulae [3-6]. 
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Figure 3 shows graphs of the functions Y~(~:2) and Y2(K2), illustrating the influence of the values of m 1 and m 2 
on the resonance properties of an elastic two-mass system in contact with an elastic base. The parameters of 
the rod have values such that o 0 / =  4.32. In this case from (2.1) we have No = 2. The numbers 1, 4 and 5 refer 
to the curves ~h():2) with m2 ffi 0, 3, 5 and the numbers 2 and 3 refer to curves  ~/2(K2) for m 1 = 0, 3 respectively. 
Clearly, Y0(~:*) ;) ~'3(to*) when ml = 3, since [3, 4] ~:* = ~/2. 

It follows from the graphs that the following situations can arise with the given values of the rod parameters. 

Configuration a: ml  = 0, m 2 ---- 0 (curves  I and 2 of  Fig, 3); Corollary 1 implies that the system has two resonances, 
since YI():*) > Y2(~:*); 

Configuration b: ml = 0, m2 = 3 (curves 4 and 2 of Fig. 3); Corollary 1 implies that the system has three resonances, 
since 'h(K*) ~< ~/2(~:*); 

Configuration c: ml  = 3, m2 = 0 (curves 1 and 3 of Fig. 3); it follows from the theorem that the system has three 
resonances, since 'h(~*) ~< y2(K*) and "to()=*) ~> Y3(~:*); 

Configuration d: ml = 3, m2 = 5 (curves 5 and 3 of Fig. 3); it follows from the theorem that the system has four 
resonances, since ),1(~:*) ~< y2(K*) and ,t0(R*) ~< Y3(~:*)- 

Figures 4 and 5 show graphs of  displacements wl as a function of the frequency. The numbers 1 and 2 in Fig. 4 
refer to the curves of wl, corresponding to configurations a and c of the system and the numbers 1 and 2 in 
Fig. 5 refer to the curves of wl, corresponding to configurations b and d of the system. The system with configuration 
a has only two resonance frequencies for a given value of od (curve 1 of Fig. 4). The values of the resonance 
frequencies decrease as ml increases. When od (curve 1 of Fig. 4). The values of the resonance frequencies decrease 
as ml increases. When ml = 3 (configuration c, curve 2 of Fig. 4) the system has three isolated resonances. It was 
founded from the calculations that any further increase in m~ leads to a decrease in the values of the resonance 
frequencies, the Q-factor of the system is improved (a considerable increase in the amplitude of oscillations is 
observed in a small neighbourhood of the resonance frequency), but the number of resonances is unaltered. 

Comparing curves 1 of  Figs 4 and 5, we see that an increase in m2 displaces the resonances to lower frequencies. 
When m2 = 3 (configuration b) a third resonance appears. The calculations show that in this case a further increase 
in m2 merely displaces the resonances to lower frequencies, there is little change in the Q-factor of the system and 
the number of resonances remains the same. 

Comparing curves 2 of  Figs 4 and 5, we see that an increase in m2 (configuration d) displaces the resonances to 
lower frequencies, and a fourth resonance appears. Any further increase in m2 has no effect on the number of 
resonances. 

Figure 6 shows curves of w2, illustrating the displacement of the punch as a function of frequency. The numbers 
1 and 2 refer to configurations b and d of the system. We see that We behaves in a similar way to w~, except that 
there are no "anti-resonance" frequencies, or frequencies at which the amplitude of the oscillations becomes zero. 

This work  was suppor ted  financially by the Russian Foundat ion  for Basic Research.  
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